BMEG 3111 Course Project

Paralyse need to type word

Stage 3 Report

Group 6
AU Wai Tak, Wales (1155175068)
CHAN Cheuk Ka (1155174356)
CHEUNG Ho Lun, Louis (1155174348)
LAU Man Hei, Wes (1155163433)
HEUNG Hoi Ying, Helen (1155176975)
HO Yu On, Martin (1155175831)

WONG Kin Hang, Koby (1155175687)

Table of Contents

BIIET PrOJECT OVEIVIBW ...t bbb 4
(O] (ol TS [OSSR 4
2.1 CIrCUIT OVEIVIEBW ...ttt bbbt 4
2.2 Oral BULION ...ttt 5
PG I €Y (01 ol0] o[TSP PRSPPI 5
2.4 MACIO BUHONS ...t 5
Y eTol g Lo Tors LI I LTS T | o TSR 6
T8 A o 0] 1< = 1o) SRS 6
3.2 GYIrOSCOPE MOUNT....ciiiiiiiiiiie ettt st e et e et e e e e e srbe e e annes 7
3.3 MACIO BUION BOXiiiiiiieiiieiiiiee e 7
SOTEWAIE DIBSIGN ...ttt bbbttt b bbb bttt 8
4.1 SOTEWAIE OVEIVIEWc.uiiiiiiieieieite sttt bbbttt ettt sttt bt 8
4.2 1O CONIOIEE ..ttt 8
4.3 MOUSE INTEITACETc.e i 11
4.4 Supplementary LIDIAITESccoiiiiiiiieieiee e 11
PrOQUCE AQVANTAGES ...ttt bbbttt bbbt 12
5.1 Shallow Learning CUINVE........cccvoiiiiecie ettt 12
5.2 High Speed and CONSISIENCYccveiiieieiieie et 12
5.3 High Customisability and EXtensibilityccccccovvveiiiiiiiicecccece e 12
MeEasUremMENT PrOCEAUIESciuiiiiiiiiieeeiesie et 13
USEE IMTANUAL.......coece bbbttt 13
7.1 SEtUP INSIIUCTIONSc.vviiiie ettt et b e re e e e 13

7.1.1 Mounting the gYrOSCOPE......ccuviiieeiii ettt 13

7.1.2 Wearing the macro bUtton DOXcocviiriiiniiiiiieie e 13

7.1.3 Placing the oral button into the user’s mouth............cccccovvvvrivniiicrinenenn. 14
7.2 Basic Operation INSTrUCTIONScoviiiiiieieie e 14

7.2.1 ENabling the SYSIEIMccueciiiccice e 14

7.2.2 MoVINg the MOUSE CUISON.......ccveiuiiieiieeie et 14

7.2.3 Clicking the left mouse bUttoncccoovieiieie e 15

7.2.4 Pressing the macro DULLONS...........cccovevieriiieieece e 15

7.2.5 GlOE-LYPING .ottt 15

7.3 TroubIESNOOTING.o 16

8 AADPENTIX .ttt bbbttt bbbt 17
O RETEIBICES.....ceiceieieee bbbttt 18

1 Brief Project Overview

yrsope conveeted
v e

macvo

puttom > %
b —

it 7| Blle Arond,

e wneey

Figure 1
User of the “Paralyse need to type word ™ system, artist’s rendition

Our project aims to help those who are disabled by amyotrophic lateral sclerosis and similar
quadriplegia-inducing diseases to use a computer, including typing and cursor navigation.
Our product consists of a glasses-mounted gyroscope for cursor movement and an oral push
button for left mouse clicks. Users can use their head movements to control the mouse cursor

and their tongue to push the push button in their mouth for mouse clicks.

2 Circuit Design

2.1 Circuit Overview

Arduino Lecnardo

SCL=
SDA I~
AREF =
elying o
—{ IOREF 013
=—{RET 012 =1
3.3V 011
—1 5V [l
—{ GND O
—{ GHND DB =
= VIN 07—
DE =
AD D5 =
Al 04—
— AZ D3
— a3 D2
— A4 TADLP—
—{ A5 RX DO

Gyroscope

VCC
GND
SCL
5 SDA

- J o=t LA TA LA

XCL
ADD
NT
1k 1k
Horizontal FOV Vertical FOV Recalibrate gyroscope Enable input ~ Macro 1 Macro 2 Macro 3

Figure 2
Circuit diagram

The project consists of an oral button, a gyroscope, three macro buttons, an Arduino Leonardo,

and various potentiometers and switches for input. Considering that many components require

4

access to +5V, +3.3V, and ground pins, we have built rails similar to that in a typical

breadboard for ease of wiring.
There are multiple interfaces the user can use to control this system:

e A gyroscope (MPU-6050)

e Two potentiometers to control the gyroscope’s horizontal and vertical field of view
e An oral button to initiate a left mouse click

e Three macro buttons to initiate custom macro actions

e A push button to re-calibrate and re-centre the gyroscope

e A master flick switch to turn the mouse control override on or off by the system

2.2 Oral Button
An oral button is used to initiate a left mouse click; it can be pressed and held to drag. The user

can use their tongue to press the button.

2.3 Gyroscope
The gyroscope is connected to the Arduino Leonardo via the 12C protocol. Two potentiometers
are used to control the field of view angle the user must operate within to control the cursor. A

press switch is used to re-calibrate the gyroscope and re-centre the cursor.

2.4 Macro Buttons

Three macro buttons are used to initiate three customisable macro actions.

3 Mechanical Design

3.1 Project Box

Figure 4

Figure 3 Project box blueprint, stage 2
Project box blueprint, stage 1

Figure 5
Project box blueprint, assembled

Figure 6
Project box, assembled

‘ Figure 7
Potentiometers for various settings

Our project box is split into two stages. Stage 1 houses the Arduino Leonardo and the
potentiometers and switches connected to it, while stage 2 houses the wires and rails of the

system and outlets for routing outgoing wires.

3.2 Gyroscope Mount

Figure 8
Gyroscope mount blueprint

We have designed a clip-on mount for ease of use to mount the gyroscope onto the bridge of

the user’s glasses.

3.3 Macro Button Box

Figure 9 Figure 10
Macro button box, artist’s rendition Macro button box blueprint

We have designed a simple macro button box to house the macro buttons to be strapped onto

the user’s chest.

4 Software Design

4.1 Software Overview

Arduino Leonardo

f_______________———————‘\ r
Potentiometers » 1/0 Controller Gyro Handler |<— Gyroscope
& switches

/ e

- Mouse Debugger &
Macro buttons Interfacer Profiler
' J

Computer
Mouse API

Figure 11
Software design and interface diagram

We separated the responsibilities of the program into independent blocks, each handling one
independent part of the project.

4.2 1/0 Controller
The 1/0O Controller is the central controlling unit of this program. It handles all the input and

output traffic and acts to coordinate between the different components.

I0Controller:: Loop() {
manageIOStates();
if (!mouseEnabled) {
return;
1

if (digitalRead(N H
gyroHandler—initialise();

}

gyroHandler—1loop();
setMousePosition();

ToController::manageIOStates() {

newInputEnabled = digitalRead();
if (newInputEnabled ¥ inputEnabled) {
inputEnabled = newInputEnabled;
Debugger::log("IO - Mouse", inputEnabled ? "Mouse override enabled" : "Mouse override disabled");
if (!linputEnabled) {
mouseInterfacer—mouseClick();

1

}

if (inputEnabled) {

mouseInterfacer—mouseClick(digitalRead(

Vector2 oldFOV = Vector2(e, 0);
FOV.x = MathLite::roundToNearest(MathLite ::map(analogRead(), 0, 1024, 0, 90),
FOV.y = MathLite::roundToNearest(MathLite ::map(analogRead(), 0, 1024, 0, 90),
if (oldFOV.x = FOV.x || oldFov.y == FOV.y) {
oldFOV = FOV;
Debugger:: log(
"I0 - FOv",
"(" + (String)analogRead() + " " + (String)analogRead(
") — (" + (String)FOV.x + " " + (String)FOV.y + ")"
)i

if (inputEnabled) {

if (digitalRead(& !macrolPressed)
macrolPressed H
doMacro(1);
return;

}

if (digitalRead(&& !macro2Pressed)
macro2Pressed
doMacro(2);
return;

3

if (digitalRead(& !macro3Pressed)
macro3Pressed H

doMacro(3);
return;

¥
if (!digitalRead(macrolPressed) {
macrolPressed 3

H
if (!digitalRead(macro2Pressed) {
macro2Pressed H

}
if (!digitalRead(macro3Pressed) {
macro3Pressed H

}

return;

I0Controller:: setMousePosition() {
normalisedYaw = MathLite::clamp(gyroHandler—getYPRAngles(@) / M_PI = 180 / FOV.x * 2, -1, 1);
normalisedPitch = MathLite::clamp(gyroHandler—getYPRAngles(1l) / M_PI = 180 / FOV.y * 2, -1, 1);

mouseInterfacer—mouseMove(normalisedYaw, -normalisedPitch);

| I0Controller::doMacro(int macroID) {
switch (macroID) {
case 1:
Debugger::log("I0 - Macro", "1: Ctrl + Z pressed");
pressControl;
pressZ,
break;
case 2:
Debugger::log("I0 - Macro", "2: Calibrate pressed");
gyroHandler—initialise();
break;
case 3:
Debugger::log("I0O - Macro", "3: Ctrl + Backspace pressed");
pressControl;
pressBackspace;
break;
default:
Debugger::log("I0O - Macro", "Macro ID not found");
break;
}
return;

}
#define

mouseInterfacer—mouseMove(0.3 * 2 — 1, 0.04 * 2 — 1
mouseInterfacer—mouseClick(t

delay(10);

mouseInterfacer—mouseClick(fa

delay(10);

#define press?

mouseInterfacer—mouseMove(0.32 * 2 — 1, 0.07 * 2 - 1
mouseInterfacer—mouseClick(tru

delay(10);

mouseInterfacer—mouseClick(fals

delay(10)

#define

mouseInterfacer—mouseMove(0.75 * 2 — 1, 0.25 * 2 - 1)
mouseInterfacer—mouseClick(true)

delay(10);

mouseInterfacer—mouseClick(fals

delay(10);

The 10controller collects user input from the potentiometers to adjust the internal field of
view (FOV) settings, then gathers input signals from the gyroHandler before finally pushing
the desired cursor position and mouse button states to the mouseInterfacer.

The yaw of the user’s head is interpreted as controlling the horizontal position of the mouse

cursor, and the pitch is interpreted as the vertical position.

10

The 10Controller also monitors signals from the macro buttons and detects rising edges to
initiate the corresponding macro actions. The default macro actions are set as undo (Control
+ Z), calibrate gyroscope, and delete word (Control + Backspace); however, the macros are

designed to be easily changed and extended.

4.3 Mouse Interfacer

MouseInterfacer ::mouseMove(X,

AbsMouse .move(MathLite::map(x, -1, 1, 0, REEN_X), MathLite::map(-y,

id MouseInterfacer::mouseClick(bool newIsLeftClicking) {
if (isLeftClicking # newIsLeftClicking) {
isLeftClicking = newIsLeftClicking;
if (isLeftClicking) {
AbsMouse. press(MOUSE_LEFT);
} else {
AbsMouse.release(MOUSE_LEFT);
}

To control the mouse cursor, we used an external library <AbsMouse.h> since it allows us to
control the absolute position of the mouse cursor instead of only its deltas.
Note that the implementation of mouseclick() allows the left mouse button to be held down

instead of only clicking, thus enabling dragging inputs to be performed by the user.

4.4 Supplementary Libraries

We have written two helper libraries to be used in other parts of the program.

MathLite {

map(dou value, > fromLow, ble fromHigh, bl ble toHigh);

clamp(= value, ; min, max) ;
absolute(le value);
roundToNearest(double value, le nearest);

11

le getLength() { return sqrt(x * x +y * y); }
ble getDistance(Vector2 other) { retu sqrt(pow(x - other.x, 2) + pow(y - other.y, 2)); }
le getDistance(Vect “tor2 b) { return a.getDistance(b); }

tic Vector2 lerpPoints tor2 b, t);

5 Product Advantages

5.1 Shallow Learning Curve

Since our product only requires our users to aim the cursor in the same manner as a standard
mouse, it is intuitive and has a minimal learning curve. Anyone who has prior experience with
a regular mouse should be able to pick up our input method quickly and intuitively. It has a

very shallow learning curve and a low skill floor, drastically increasing its accessibility.

5.2 High Speed and Consistency

The ability to absolutely position the mouse cursor with the gyroscope instead of controlling
the mouse cursor deltas dramatically enhances the speed and stability of the system. Since the
speed of the cursor is controlled entirely by the users’ motions instead of a predetermined speed
value, it has a high consistency, which allows users to acquire muscle memory as they use the

system to enhance their typing speed further in the future.
From our testing, we can easily achieve 12 words per minute.

5.3 High Customisability and Extensibility

The default setup includes three macro buttons for undo (Control + Z), calibrate gyroscope,
and delete word (Control + Backspace. Users can change the function of individual macro
buttons to fit their needs. For example, users may change the function of undo to copy (Control
+ C) and the function of deleting words to paste (Control + V) or even construct a long chain
of inputs that can perform a complex task like opening their email app and logging in. Users

can also extend the functionality by adding more buttons to the box to customise their setup.

12

6 Measurement Procedures

Our product uses a gyroscope to sense the user’s head movement based on its functionality of
measuring angular velocity and rotational motion. The gyroscope we used is an MPU-6050, a
microelectromechanical motion-tracking device. Gyroscopes operate based on the principle of
the conservation of angular momentum. The working principle of a gyroscope involves
utilising the inertia of a spinning rotor to resist changes in its orientation [1]. In our case, two
axes of angular tracking is enough to coordinate a virtual keyboard. The gyroscope can detect
orientation changes and provide information about the rate and direction of rotation.

7 User Manual
7.1 Setup Instructions

7.1.1 Mounting the gyroscope

b
\

J

1. Insert the gyroscope PCB into the gyroscope mount.
2. Attach the gyroscope mount securely to the bridge of the user’s glasses.

3. Adjust the position of the gyroscope to ensure it aligns with your head movements.

7.1.2 Wearing the macro button box

1. Secure the macro button box in front of the user’s chest using a strap.
2. Adjust the position of the box until it is high enough such that the user can press the
buttons with their chin but low enough such that regular typing movements will not

lead to accidental inputs of the buttons.

13

7.1.3

Placing the oral button into the user’s mouth

Wrap the mouse button with plastic wrap. Make sure the seal is watertight.
Use rubbing alcohol to clean the wrap surface. Allow it to dry.
Insert the button into the user’s mouth so that the user can push it with their tongue.

Place also a piece of cotton alongside to absorb excess saliva if necessary.

7.2 Basic Operation Instructions

7.2.1

1.

7.2.2

Enabling the system

Flip the mouse control override switch to the “on” position to turn it on. You can flip
the override off anytime to temporarily disable the input system.

Upon turning on initially, the gyroscope will automatically calibrate itself. During
calibration, the user should hold their head still in the most comfortable neutral position
until the calibration is over, which is indicated by the mouse cursor reappearing at the
centre of the screen. Future user-induced calibrations are to be performed in the same

manner.

Moving the mouse cursor

Rotate your head in accordance with the desired direction of the mouse location. The
yaw of your head controls the horizontal position of the mouse cursor, while the pitch
of your head controls the vertical position of the mouse cursor.

(Initial setup only) Adjust the horizontal and vertical FOV using the potentiometers

until the cursor movement best matches the user’s head movement.

14

7.2.3 Clicking the left mouse button

1. Press the oral button using your tongue to perform a left mouse click. Press and hold to
drag.

7.2.4 Pressing the macro buttons

1. (Initial setup only) Customise the macros to your liking. The default macro actions are
undo (Control + Z), calibrate gyroscope, and delete word (Control + Backspace) from
left to right. Users are not recommended to remove the gyroscope calibration function
from the macros since it is necessary to calibrate the gyroscope occasionally.

2. Using your chin, press the desired macro button to initiate the macro action.

7.2.5 Glide-typing
Users are encouraged to enable the glide-typing input keyboard on their computer to enhance

speed and lower the precision skill floor. Note that some software does not support glide-typing.

&123 Ctrl

1. Aim at the first letter of the desired word. For example, “apple”.

2. Press and hold the oral button.

3. Glide the cursor across each letter in the word consecutively in one motion without
releasing the oral button.

4. When the last letter of the word is reached, release the oral button.

5. If you have made a mistake, you can choose a word from the autosuggestions above the
keyboard to correct it.

15

Since glide-typing is equipped with predictive text, it is unnecessary to position the cursor to
the exact position of each letter. For example, accidentally swiping the cursor to “R” instead
of “E” is still tolerable. As long as the cursor reaches each letter closely enough, the keyboard

can identify the user’s intention and type the desired word even with user inaccuracies.

7.3 Troubleshooting
If you encounter problems using the “Paralyse need to type word ™ input system, please refer

to the following checklist.

e Ensure all wire connections are secure.
e Ensure the oral button is dry and is wrapped in a watertight manner.

e Ensure the gyroscope is mounted correctly and securely on the bridge of your glasses.

16

8 Appendix
Below are pictures of the work-in-progress circuits and wirings.

Figure 12
Circuits and wirings at different stages

Figure 13
The first iteration of the prototype

17

9 References

[1] V. M. N. Passaro, A. Cuccovillo, L. Vaiani, M. De Carlo and C. E. Camanella, “Gyroscope
Technology and Applications: A Review in the Industrial Perspective,” Sensors, vol. 17,
no. 10, p. 2284, 7 October 2017.

18

